Lower bound

Upper bound

Ratio

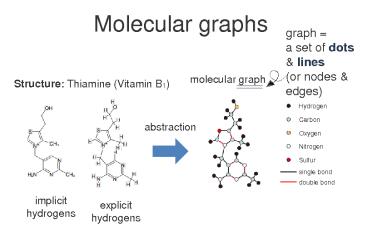
An inequality between the edge-Wiener index and the Wiener index of a graph

A. Tepeh

joint work with M. Knor and R. Škrekovski

Topological indices

- derived from molecular graphs
- numerical values



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Wiener index, defined as the sum of distances between all unordered pairs of vertices in a graph, is one of the most popular molecular descriptors.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Wiener index, defined as the sum of distances between all unordered pairs of vertices in a graph, is one of the most popular molecular descriptors.

- introduced by H. Wiener, 1947
- boiling point of paraffines is in strong correlation with the graph structure of their molecules
- applications in chemistry, communication, facility location, cryptology, architecture,...

The Wiener index, defined as the sum of distances between all unordered pairs of vertices in a graph, is one of the most popular molecular descriptors.

- introduced by H. Wiener, 1947
- boiling point of paraffines is in strong correlation with the graph structure of their molecules
- applications in chemistry, communication, facility location, cryptology, architecture,...

Our goal was to

- compare Wiener index with the edge-Wiener index (to improve known results)
- improve the upper bound for the edge-Wiener index
- explore the ratio between both indices (find extremal graphs)

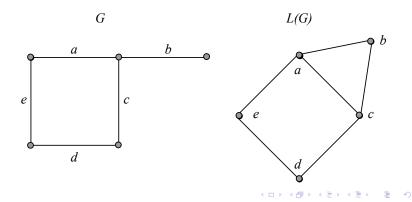
Lower bound

Upper bound

Ratio

Basic definitions

Let L(G) denote the **line graph** of G: V(L(G)) = E(G) and two distinct edges $e, f \in E(G)$ adjacent in L(G) whenever they share an end-vertex in G

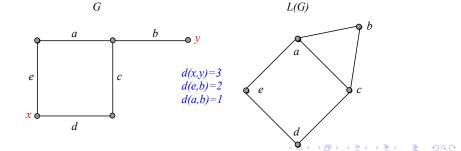


Ratio

Basic definitions

- distance between vertices: d_G(u, v) denotes the distance
 (=the length of a shortest path) between vertices u, v ∈ V(G)
- distance between edges: $d_G(e, f) = d_{L(G)}(e, f)$,

$$e = u_1 u_2$$
, $f = v_1 v_2$
if $e \neq f$, then $d(e, f) = \min\{d(u_i, v_j) : i, j \in \{1, 2\}\} + 1$,
if $e = f$, $d(e, f) = 0$



	od		

Lower bound

Upper bound

Ratio

Wiener index $W(G) = \sum_{\{u,v\}\subseteq V(G)} d(u,v)$

edge-Wiener index

$$W_e(G) = \sum_{\{e,f\}\subseteq E(G)} d(e,f)$$

- $W_e(G) = W(L(G))$
- sometimes in the literature slightly different definition: $W_e(G) + \binom{n}{2}$

ower bound

Upper bound

- $\deg(u) =$ the degree of $u \in V(G)$
- $\delta(G) = \min\{deg(v) : v \in V(G)\}$

Gutman index $Gut(G) = \sum_{\{u,v\}\subseteq V(G)} \deg(u) \deg(v) d(u,v)$

Ratio

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

some known results

Wu, 2010

• Let G be a connected graph of order n with $\delta(G) \ge 2$. Then $W_e(G) \ge W(G)$ with equality if and only if $G \cong C_n$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

some known results

Wu, 2010

- Let G be a connected graph of order n with $\delta(G) \ge 2$. Then $W_e(G) \ge W(G)$ with equality if and only if $G \cong C_n$.
- Let G be a connected graph of size m. Then

$$\frac{1}{4}(Gut(G)-m) \leq W_e(G) \leq \frac{1}{4}(Gut(G)-m) + \binom{m}{2}.$$

Ratio

• $\kappa_m(G)$ = the number of *m*-cliques in *G*

Knor, Potočnik and Škrekovski, 2014

• Let G be a connected graph. Then

$$W_e(G) \ge rac{1}{4} \operatorname{Gut}(G) - rac{1}{4} |E(G)| + rac{3}{4} \kappa_3(G) + 3\kappa_4(G)$$
 (1)

with equality in (1) if and only if G is a tree or a complete graph.

Ratio

• $\kappa_m(G)$ = the number of *m*-cliques in *G*

Knor, Potočnik and Škrekovski, 2014

• Let G be a connected graph. Then

$$W_e(G) \geq \frac{1}{4} \operatorname{Gut}(G) - \frac{1}{4} |E(G)| + \frac{3}{4} \kappa_3(G) + 3\kappa_4(G)$$
 (1)

with equality in (1) if and only if G is a tree or a complete graph.

• Let G be a connected graph of minimal degree $\delta \ge 2$. Then

$$W(L(G)) \geq \frac{\delta^2 - 1}{4}W(G).$$

• conjecture: $W(L(G)) \ge \frac{\delta^2}{4}W(G)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

main theorem

Theorem

Let G be a connected graph of minimum degree δ . Then,

$$W_e(G) \geq rac{\delta^2}{4} W(G)$$

with equality holding if and only if G is isomorphic to a path on three vertices or a cycle.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

For the proof we need...

average distance of endpoints of edges $e = u_1 u_2$ and $f = v_1 v_2$ $s(u_1 u_2, v_1 v_2) = \frac{1}{4} (d(u_1, v_1) + d(u_1, v_2) + d(u_2, v_1) + d(u_2, v_2))$

For the proof we need...

average distance of endpoints of edges $e = u_1 u_2$ and $f = v_1 v_2$ $s(u_1 u_2, v_1 v_2) = \frac{1}{4} (d(u_1, v_1) + d(u_1, v_2) + d(u_2, v_1) + d(u_2, v_2))$

Lemma

Let G be a connected graph. Then $\sum_{\{e,f\}\subseteq E(G)} s(e,f) = \frac{1}{4} \Big(\operatorname{Gut}(G) - |E(G)| \Big).$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lemma (Knor et al.,2014)

Let u_1u_2, v_1v_2 be a pair of edges of a connected graph G. Then

$$d(u_1u_2, v_1v_2) \ge s(u_1u_2, v_1v_2) + D(u_1u_2, v_1v_2),$$
(2)

where

$$D(u_1u_2, v_1v_2) = \begin{cases} -\frac{1}{2} & \text{if } u_1u_2 = v_1v_2; \\ \frac{1}{4} & \text{if the pair } u_1u_2, v_1v_2 \text{ forms a triangle;} \\ 1 & \text{if the pair } u_1u_2, v_1v_2 \text{ forms a } K_4; \\ 0 & \text{otherwise.} \end{cases}$$

Moreover, equality holds in (2) if and only if (i) $u_1u_2 = v_1v_2$, or

- (ii) the pair u_1u_2 , v_1v_2 forms a triangle or K_4 , or
- (iii) if u_1u_2 and v_1v_2 lie on a straight line.

- *e*, *f* ∈ *E*(*G*)
- D(e, f) = d(e, f) s(e, f)
- if D(e, f) = α, we say that e, f forms a pair of type D_α or that the pair e, f belongs to the set D_α
- if e = f, then $D(e, f) = -\frac{1}{2}$
- $\mathcal{I} = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• *e*, *f* ∈ *E*(*G*)

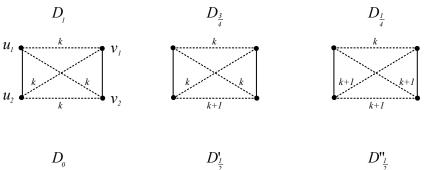
•
$$D(e, f) = d(e, f) - s(e, f)$$

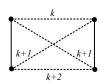
- if D(e, f) = α, we say that e, f forms a pair of type D_α or that the pair e, f belongs to the set D_α
- if e = f, then $D(e, f) = -\frac{1}{2}$
- $\mathcal{I} = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$

Lemma

In a connected graph, every pair of distinct edges belongs to D_{α} for some $\alpha \in \mathcal{I}$.

All types of pairs of two edges





$$W_e(G) = \sum_{\substack{\{e,f\}\subseteq E(G)\\ \{e,f\}\subseteq E(G)}} d(e,f)$$

=
$$\sum_{\substack{\{e,f\}\subseteq E(G)\\ \{e,f\}\subseteq E(G)}} s(e,f) + \sum_{\substack{\{e,f\}\subseteq E(G)\\ \{e,f\}\subseteq E(G)}} D(e,f)$$

$$W_{e}(G) = \sum_{\substack{\{e,f\}\subseteq E(G)\\ = \sum_{\substack{\{e,f\}\subseteq E(G)\\ q}} s(e,f) + \sum_{\substack{\{e,f\}\subseteq E(G)\\ q}} D(e,f) \\ = \frac{\operatorname{Gut}(G)}{4} - \frac{|E(G)|}{4} + \sum_{\substack{\{e,f\}\subseteq E(G)\\ q}} D(e,f)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$W_{e}(G) = \sum_{\substack{\{e,f\}\subseteq E(G)\\ e,f\}\subseteq E(G)}} d(e,f)$$

= $\sum_{\substack{\{e,f\}\subseteq E(G)\\ e,f\}\subseteq E(G)}} s(e,f) + \sum_{\substack{\{e,f\}\subseteq E(G)\\ e,f\}}} D(e,f)$
= $\frac{\operatorname{Gut}(G)}{4} - \frac{|E(G)|}{4} + \sum_{\substack{\{e,f\}\subseteq E(G)\\ e,f\}}} D(e,f)$

Proposition

Let G be a connected graph. Then

$$W_e(G) = \frac{\operatorname{Gut}(G)}{4} - \frac{|E(G)|}{4} + |D_1| + \frac{1}{4}|D_{\frac{1}{4}}| + \frac{1}{2}|D_{\frac{1}{2}}| + \frac{3}{4}|D_{\frac{3}{4}}|.$$

イロト イピト イヨト イヨト 三日

Case 1: G is non-regular

$$\begin{array}{rcl} 4W_e(G) & = & \operatorname{Gut}(G) - |E(G)| + 4|D_1| + |D_{\frac{1}{4}}| + 2|D_{\frac{1}{2}}| + 3|D_{\frac{3}{4}}| \\ & \geq & \operatorname{Gut}(G) - |E(G)| \end{array}$$

イロト イピト イヨト イヨト 三日

Case 1: G is non-regular

$$\begin{array}{lll} 4W_e(G) &= & \operatorname{Gut}(G) - |E(G)| + 4|D_1| + |D_{\frac{1}{4}}| + 2|D_{\frac{1}{2}}| + 3|D_{\frac{3}{4}}| \\ &\geq & \operatorname{Gut}(G) - |E(G)| \\ &= & \sum_{\{u,v\} \subseteq V(G)} \deg(u) \deg(v) \, d(u,v) - |E(G)| \end{array}$$

イロト イピト イヨト イヨト 三日

Case 1: G is non-regular

$$\begin{array}{lll} 4W_e(G) & = & \operatorname{Gut}(G) - |E(G)| + 4|D_1| + |D_{\frac{1}{4}}| + 2|D_{\frac{1}{2}}| + 3|D_{\frac{3}{4}}| \\ & \geq & \operatorname{Gut}(G) - |E(G)| \\ & = & \sum_{\{u,v\} \subseteq V(G)} \deg(u) \deg(v) \, d(u,v) - |E(G)| \\ & \geq & \delta^2 \sum_{\{u,v\} \in V(G) \setminus \{w\}} d(u,v) + \\ & & (\delta+1) \sum_{u \in V(G) \setminus \{w\}} \deg(u) d(u,w) - |E(G)| \end{array}$$

Case 1: G is non-regular

$$\begin{array}{lll} 4W_{e}(G) & = & \operatorname{Gut}(G) - |E(G)| + 4|D_{1}| + |D_{\frac{1}{4}}| + 2|D_{\frac{1}{2}}| + 3|D_{\frac{3}{4}}| \\ & \geq & \operatorname{Gut}(G) - |E(G)| \\ & = & \sum_{\{u,v\} \subseteq V(G)} \operatorname{deg}(u) \operatorname{deg}(v) d(u,v) - |E(G)| \\ & \geq & \delta^{2} \sum_{\{u,v\} \in V(G) \setminus \{w\}} d(u,v) + \\ & & (\delta+1) \sum_{u \in V(G) \setminus \{w\}} \operatorname{deg}(u) d(u,w) - |E(G)| \\ & \geq & \delta^{2} W(G) + \sum_{u \in V(G) \setminus \{w\}} \operatorname{deg}(u) - |E(G)| \end{array}$$

くロン 不得 とく ヨン イヨン

э

Case 1: G is non-regular

G has a vertex $w \in V(G)$ of degree at least $\delta + 1$. By previous proposition:

$$\begin{array}{lcl} 4W_{e}(G) & = & \operatorname{Gut}(G) - |E(G)| + 4|D_{1}| + |D_{\frac{1}{4}}| + 2|D_{\frac{1}{2}}| + 3|D_{\frac{3}{4}}| \\ & \geq & \operatorname{Gut}(G) - |E(G)| \\ & = & \sum_{\{u,v\} \subseteq V(G)} & \operatorname{deg}(u) \operatorname{deg}(v) \operatorname{d}(u,v) - |E(G)| \\ & \geq & \delta^{2} \sum_{\{u,v\} \in V(G) \setminus \{w\}} & \operatorname{deg}(u) \operatorname{d}(u,v) + \\ & & (\delta+1) \sum_{u \in V(G) \setminus \{w\}} & \operatorname{deg}(u) \operatorname{d}(u,w) - |E(G)| \\ & \geq & \delta^{2} W(G) + \sum_{u \in V(G) \setminus \{w\}} & \operatorname{deg}(u) - |E(G)| \\ & \geq & \delta^{2} W(G). \end{array}$$

Equality is attained if G is isomorphic P_3 .

Ratio

Case 2: G is regular

Lemma

In a 2-connected graph G, we have

$$2|D'_{\frac{1}{2}}| + |D_{\frac{1}{4}}| \ge |E(G)|.$$

Moreover, equality holds if and only if G is a cycle.

Case 2: G is regular

Lemma

In a 2-connected graph G, we have

$$2|D'_{\frac{1}{2}}| + |D_{\frac{1}{4}}| \ge |E(G)|.$$

Moreover, equality holds if and only if G is a cycle.

Lemma

Suppose that $G \neq K_2$ is a regular graph containing bridges. Then every end-block of G contains an edge e such that for every bridge b the pair e, b is in $D_{\frac{1}{2}}^{"}$.

Ratio

Case 2: G is regular

Lemma

In a 2-connected graph G, we have

$$2|D'_{\frac{1}{2}}| + |D_{\frac{1}{4}}| \ge |E(G)|.$$

Moreover, equality holds if and only if G is a cycle.

Lemma

Suppose that $G \neq K_2$ is a regular graph containing bridges. Then every end-block of G contains an edge e such that for every bridge b the pair e, b is in $D_{\frac{1}{2}}''$.

• if G contains a bridge $\Rightarrow |D_{\frac{1}{2}}''| \ge 2|B|$

•
$$4W_e(G) \ge ... \ge \delta^2 W(G)$$

equality is obtained if G is a cycle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Upper bound for $W_e(G)$

Dankelmann, 2009 $W(L(G)) \le \frac{4n^5}{5^5} + O(n^{\frac{9}{2}})$

Mukwembi, 2012

Let G be a connected graph on n vertices. Then

$$Gut(G) \le \frac{2^4}{5^5}n^5 + O(n^4).$$

Upper bound for $W_e(G)$

Dankelmann, 2009 $W(L(G)) \le \frac{4n^5}{5^5} + O(n^{\frac{9}{2}})$

Mukwembi, 2012

Let G be a connected graph on n vertices. Then

$$Gut(G) \le \frac{2^4}{5^5}n^5 + O(n^4).$$

Theorem

Let G be a connected graph on n vertices. Then

$$W_e(G) \leq rac{4}{5^5}n^5 + O(n^4).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

problem by Dobrynin and Mel'nikov, 2012

Estimate the ratio $W(L^{i}(G))/W(G)$, where $L^{i}(G)$ stands for an *iterated line graph*, defined inductively as

$$L^{i}(G) = \begin{cases} G & \text{if } i = 0, \\ L(L^{i-1}(G)) & \text{if } i > 0. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

problem by Dobrynin and Mel'nikov, 2012

Estimate the ratio $W(L^{i}(G))/W(G)$, where $L^{i}(G)$ stands for an *iterated line graph*, defined inductively as

$$L^{i}(G) = \begin{cases} G & \text{if } i = 0, \\ L(L^{i-1}(G)) & \text{if } i > 0. \end{cases}$$

Theorem

Among all connected graphs on n vertices, the fraction $\frac{W_e(G)}{W(G)}$ is minimum for the star S_n , in which case $\frac{W_e(G)}{W(G)} = \frac{n-2}{2(n-1)}$.

Ratio

THANK YOU