
Introduction Lower bound Upper bound Ratio

An inequality between the edge-Wiener index and
the Wiener index of a graph

A. Tepeh

joint work with
M. Knor and R. Škrekovski



Introduction Lower bound Upper bound Ratio

Topological indices

• derived from molecular graphs
• numerical values
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The Wiener index, defined as the sum of distances between all
unordered pairs of vertices in a graph, is one of the most popular
molecular descriptors.

• introduced by H. Wiener, 1947

• boiling point of paraffines is in strong correlation with the
graph structure of their molecules

• applications in chemistry, communication, facility location,
cryptology, architecture,...

Our goal was to

• compare Wiener index with the edge-Wiener index (to
improve known results)

• improve the upper bound for the edge-Wiener index

• explore the ratio between both indices (find extremal graphs)
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Basic definitions

Let L(G ) denote the line graph of G :
V (L(G )) = E (G ) and two distinct edges e, f ∈ E (G ) adjacent in
L(G ) whenever they share an end-vertex in G
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Basic definitions

• distance between vertices: dG (u, v) denotes the distance
(=the length of a shortest path) between vertices u, v ∈ V (G )

• distance between edges: dG (e, f ) = dL(G)(e, f ),
m
e = u1u2, f = v1v2
if e 6= f , then d(e, f ) = min{d(ui , vj) : i , j ∈ {1, 2}}+ 1,
if e = f , d(e, f ) = 0
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Wiener index

W (G ) =
∑

{u,v}⊆V (G)

d(u, v)

edge-Wiener index

We(G ) =
∑

{e,f }⊆E(G)

d(e, f )

• We(G ) = W (L(G ))

• sometimes in the literature slightly different definition:
We(G ) +

(n
2

)
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• deg(u) = the degree of u ∈ V (G )

• δ(G ) = min{deg(v) : v ∈ V (G )}

Gutman index

Gut(G ) =
∑

{u,v}⊆V (G)

deg(u)deg(v) d(u, v)
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some known results

Wu, 2010

• Let G be a connected graph of order n with δ(G ) ≥ 2. Then
We(G ) ≥W (G ) with equality if and only if G ∼= Cn.

• Let G be a connected graph of size m. Then

1

4
(Gut(G )−m) ≤We(G ) ≤ 1

4
(Gut(G )−m) +

(
m

2

)
.
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• κm(G ) = the number of m-cliques in G

Knor, Potočnik and Škrekovski, 2014

• Let G be a connected graph. Then

We(G ) ≥ 1

4
Gut(G )− 1

4
|E (G )|+ 3

4
κ3(G ) + 3κ4(G ) (1)

with equality in (1) if and only if G is a tree or a complete
graph.

• Let G be a connected graph of minimal degree δ ≥ 2. Then

W (L(G )) ≥ δ2 − 1

4
W (G ).

• conjecture: W (L(G )) ≥ δ2

4 W (G )
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main theorem

Theorem

Let G be a connected graph of minimum degree δ. Then,

We(G ) ≥ δ2

4
W (G )

with equality holding if and only if G is isomorphic to a path on
three vertices or a cycle.
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For the proof we need...

average distance of endpoints of edges e = u1u2 and f = v1v2

s(u1u2, v1v2) = 1
4

(
d(u1, v1) + d(u1, v2) + d(u2, v1) + d(u2, v2)

)

Lemma

Let G be a connected graph. Then∑
{e,f }⊆E(G)

s(e, f ) =
1

4

(
Gut(G )− |E (G )|

)
.
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Lemma (Knor et al.,2014)

Let u1u2, v1v2 be a pair of edges of a connected graph G . Then

d(u1u2, v1v2) ≥ s(u1u2, v1v2) + D(u1u2, v1v2), (2)

where

D(u1u2, v1v2) =


−1

2 if u1u2 = v1v2;
1
4 if the pair u1u2, v1v2 forms a triangle;

1 if the pair u1u2, v1v2 forms a K4;

0 otherwise.

Moreover, equality holds in (2) if and only if

(i) u1u2 = v1v2, or

(ii) the pair u1u2, v1v2 forms a triangle or K4, or

(iii) if u1u2 and v1v2 lie on a straight line.
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• e, f ∈ E (G )

• D(e, f ) = d(e, f )− s(e, f )

• if D(e, f ) = α, we say that e, f forms a pair of type Dα or
that the pair e, f belongs to the set Dα

• if e = f , then D(e, f ) = −1
2

• I = {0, 14 ,
1
2 ,

3
4 , 1}

Lemma

In a connected graph, every pair of distinct edges belongs to Dα
for some α ∈ I.
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All types of pairs of two edges
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We(G ) =
∑

{e,f }⊆E(G)

d(e, f )

=
∑

{e,f }⊆E(G)

s(e, f ) +
∑

{e,f }⊆E(G)

D(e, f )

=
Gut(G )

4
− |E (G )|

4
+

∑
{e,f }⊆E(G)

D(e, f )

Proposition

Let G be a connected graph. Then

We(G ) =
Gut(G )

4
− |E (G )|

4
+ |D1|+

1

4
|D 1

4
|+ 1

2
|D 1

2
|+ 3

4
|D 3

4
|.
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Case 1: G is non-regular

G has a vertex w ∈ V (G ) of degree at least δ + 1. By previous
proposition:

4We(G ) = Gut(G )− |E (G )|+ 4|D1|+ |D 1
4
|+ 2|D 1

2
|+ 3|D 3

4
|

≥ Gut(G )− |E (G )|

=
∑

{u,v}⊆V (G)

deg(u)deg(v) d(u, v)− |E (G )|

≥ δ2
∑

{u,v}∈V (G)\{w}

d(u, v)+

(δ + 1)
∑

u∈V (G)\{w}

deg(u)d(u,w)− |E (G )|

≥ δ2W (G ) +
∑

u∈V (G)\{w}

deg(u)− |E (G )|

≥ δ2W (G ).

Equality is attained if G is isomorphic P3.
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Case 2: G is regular

Lemma

In a 2-connected graph G , we have

2|D ′1
2
|+ |D 1

4
| ≥ |E (G )|.

Moreover, equality holds if and only if G is a cycle.

Lemma

Suppose that G 6= K2 is a regular graph containing bridges. Then
every end-block of G contains an edge e such that for every bridge
b the pair e, b is in D ′′1

2

.

• if G contains a bridge ⇒ |D ′′1
2

| ≥ 2|B|

• 4We(G ) ≥ ... ≥ δ2W (G )

• equality is obtained if G is a cycle.
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Upper bound for We(G )

Dankelmann, 2009

W (L(G )) ≤ 4n5

55
+ O(n

9
2 )

Mukwembi, 2012

Let G be a connected graph on n vertices. Then

Gut(G ) ≤ 24

55
n5 + O(n4).

Theorem

Let G be a connected graph on n vertices. Then

We(G ) ≤ 4

55
n5 + O(n4).
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Upper bound for We(G )
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problem by Dobrynin and Mel’nikov, 2012

Estimate the ratio W (Li (G ))/W (G ), where Li (G ) stands for an
iterated line graph, defined inductively as

Li (G ) =

{
G if i = 0,
L(Li−1(G )) if i > 0.

Theorem

Among all connected graphs on n vertices, the fraction We(G)
W (G) is

minimum for the star Sn, in which case We(G)
W (G) = n−2

2(n−1) .
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