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Lower bound

Upper bound

Topological indices

e derived from molecular graphs
e numerical values
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Introduction

The Wiener index, defined as the sum of distances between all
unordered pairs of vertices in a graph, is one of the most popular
molecular descriptors.

e introduced by H. Wiener, 1947

e boiling point of paraffines is in strong correlation with the
graph structure of their molecules

e applications in chemistry, communication, facility location,
cryptology, architecture,...
Our goal was to
e compare Wiener index with the edge-Wiener index (to
improve known results)
e improve the upper bound for the edge-Wiener index

e explore the ratio between both indices (find extremal graphs)



Introduction

Basic definitions

Let L(G) denote the line graph of G:
V(L(G)) = E(G) and two distinct edges e, f € E(G) adjacent in
L(G) whenever they share an end-vertex in G

G L(G)




Introduction

Basic definitions

e distance between vertices: dg(u, v) denotes the distance
(=the length of a shortest path) between vertices u, v € V(G)
o distance between edges: dg(e, ) = di(g)(e, f),
)
€ = ujuy, f= ViVvo
if e # f, then d(e, f) = min{d(uj,v;) : i,j € {1,2}} +1,
ife=f,d(e,f)=0

G L(G)

e c d(x,y)=3
d(e,b)=2
d(a,b)=1
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Wiener index

we)= > duv)

{u,v}CV(G)

edge-Wiener index

We(G) = Z d(e7 f)

{e,f}CE(G)

o We(G) = W(L(G))
e sometimes in the literature slightly different definition:
We(G) + (3)



Introduction

e deg(u) = the degree of u € V(G)
¢ 0(G) = min{deg(v) : v e V(G)}

Gutman index

Gut(G) = Z deg(u) deg(v) d(u, v)
{uviCV(6)
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some known results

Wu, 2010

e Let G be a connected graph of order n with 6(G) > 2. Then
We(G) > W(G) with equality if and only if G = C,.
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some known results

Wu, 2010

e Let G be a connected graph of order n with 6(G) > 2. Then
We(G) > W(G) with equality if and only if G = C,.

e Let G be a connected graph of size m. Then

2(Gut(G) — m) < We(G) < ;(Gut(G) —m) + <’;>



Introduction
¢ £m(G) = the number of m-cliques in G
Knor, PotoZnik and Skrekovski, 2014
e Let G be a connected graph. Then
1 1 3
We(6) 2 7Gut(G) - ZIE(G)] + ;r3(G) +3xa(G) (1)

with equality in (1) if and only if G is a tree or a complete
graph.



Introduction
¢ £m(G) = the number of m-cliques in G

Knor, Poto¢nik and Skrekovski, 2014

e Let G be a connected graph. Then
1 1 3
We(6) 2 5Gut(6) — ;|E(G)] + 3#3(G) +3xa(G) (1)

with equality in (1) if and only if G is a tree or a complete
graph.
e Let G be a connected graph of minimal degree 6 > 2. Then

02 —1
4

W(L(G)) > W(G).

o conjecture: W(L(G)) > & W/(G)



Lower bound

main theorem

Theorem

Let G be a connected graph of minimum degree 6. Then,

We(G) = > wi(e)

with equality holding if and only if G is isomorphic to a path on
three vertices or a cycle.
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average distance of endpoints of edges e = uiup and f = viv»,

s(uiug, vivp) = %(d(ul, vi) + d(u1, v2) + d(u2, vi) + d(up, vz))
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For the proof we need...

average distance of endpoints of edges e = uiup and f = viv»,

s(uiug, vivp) = %(d(ul, vi) + d(u1, v2) + d(u2, vi) + d(up, v2))

Lemma
Let G be a connected graph. Then

S s(ef) = %(Gu‘c(G) - E(6)]).

{e,f}CE(G)



Lower bound

Lemma (Knor et al.,2014)

Let uiup, vivo be a pair of edges of a connected graph G. Then

d(uruz, vivo) > s(uiup, vive) + D(uruo, vivo), (2)
where
—% if upur = vivo;
B % if the pair ujus, viv» forms a triangle;
D(U1u2, V1V2) = . .
1 if the pair uyup, vivo forms a Kj;
0 otherwise.

Moreover, equality holds in (2) if and only if
(i) viup = wvivp, or
(ii) the pair uyuy, vivy forms a triangle or Ky, or

(iii) if uyuy and vivy lie on a straight line.



Lower bound

e,f € E(G)

D(e,f) =d(e,f) —s(e,f)

if D(e,f) = «, we say that e, f forms a pair of type D, or
that the pair e, f belongs to the set D,

if e=f, then D(e, f) = —3

I={0,3,33.1}

Y4029 4>



Lower bound

e,f € E(G)

D(e,f) =d(e,f) —s(e,f)

if D(e,f) = «, we say that e, f forms a pair of type D, or
that the pair e, f belongs to the set D,

if e=f, then D(e, f) = —3

I={0,3,33.1}

Y4029 4>

Lemma

In a connected graph, every pair of distinct edges belongs to D,
for some o € T.
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All types of pairs of two edges
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Lower bound

>

{e,f}CE(G)

>

{e,f}CE(G)

d(e, f)

s(e, f) +

> D(ef)

{e,f}CE(G)



Lower bound

> d(ef)

{e.f}CE(G)

Z s(e, f) + Z D(e,f)
{e,f}CE(G) {e,f}CE(G)
Gut(G)

- |E(46)| + Y. D(ef)

{e,fYCE(G)

4



Lower bound

We(G) = ) dlef)
{e,f}CE(G)
= Z s(e, f)+ Z D(e, f)
{e,f}CE(G) {e,f}CE(G)
Gut(G) _ |E(G)]
= -t Y Def)

4
{e.,FYCE(G)

Proposition
Let G be a connected graph. Then

Gut(G)  |E(G)
4 4

1 1 3
We(G) = +1D1] + 71D3] + 51031+ 21Dy



Lower bound

Case 1: G is non-regular
G has a vertex w € V(G) of degree at least § + 1. By previous
proposition:
AWe(G) = Gut(G) —[E(G)| +4|D1| + [Dy| +2|Dy| +3|Ds|
> Gut(G) — [E(G)



Lower bound

Case 1: G is non-regular

G has a vertex w € V(G) of degree at least § + 1. By previous
proposition:

4We(G) = Gut(G) —[E(G)
> Gut(G) — |E(G)|
= Z deg(u)deg(v) d(u,v) — |E(G)|

{u,v}CV(G)

+4‘D1‘ + ‘Dl‘ +2‘D1’ +3’D3‘



Lower bound

Case 1: G is non-regular

G has a vertex w € V(G) of degree at least § + 1. By previous
proposition:

4We(G) = Gut(G) — [E(G)
Gut(G) — [E(G)|
Y deg(u)deg(v)d(u,v) — |E(G)|
{uvicv(e)
52 Z d(u,v)+
{uvieV(G)\{w}
6+1) Y deg(u)d(u,w)—|E(G)|

ueV(G)\{w}

+4|Dy| + \Dl\ +2\Dly +3103\

v

v



Lower bound

Case 1: G is non-regular

G has a vertex w € V(G) of degree at least § + 1. By previous
proposition:

AWe(G) = Gut(G)—]E(G)H—4\D1H-\D1\+2\D1]+3]D3\
> Gut(G) — |E(G)|
= > deg(u)deg(v)d(u,v) — |E(G)]
{u,v}CV(G)
> 52 Z d(u,v)+
{u,v}eV(G)\{w}
(G+1) > deg(u)d(u,w) - |E(G)|
ueV(G)\{w}
> SCW(G)+ > deg(u) - |E(G)]

ueV(G)\{w}



Lower bound

Case 1: G is non-regular

G has a vertex w € V(G) of degree at least § + 1. By previous

proposition:

4We(G) =

>

>

Gut(G) — |E(G)|
Gut(G) — [E(G)|
Y deg(u)deg(v)d(u,v) — |E(G)|

{u,v}CV(G)

52 Z d(u,v)+

+4|Dy| + \Dl\ +2\Dly +3103\

{uvieVv(G)\{w}
(6+1) Y deg(u)d(u,w)—|E(G)]
ueV(G)\{w}
FPW(G)+ Y, deg(u)—|E(G)]
ueV(G)\{w}
2W(G).

Equality is attained if G is isomorphic Ps.
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Case 2: G is regular

Lemma

In a 2-connected graph G, we have
2|01 | + 1Dy = [E(G)|-

Moreover, equality holds if and only if G is a cycle.



Lower bound

Case 2: G is regular

Lemma

In a 2-connected graph G, we have
2|01 | + 1Dy = [E(G)|-
Moreover, equality holds if and only if G is a cycle.

Lemma
Suppose that G # K is a regular graph containing bridges. Then
every end-block of G contains an edge e such that for every bridge
b the pair e, b is in DY.

2



Lower bound

Case 2: G is regular

Lemma

In a 2-connected graph G, we have
2|01 | + 1Dy = [E(G)|-
Moreover, equality holds if and only if G is a cycle.

Lemma

Suppose that G # K is a regular graph containing bridges. Then
every end-block of G contains an edge e such that for every bridge
b the pair e, b is in DY.

2

e if G contains a bridge = |DY| > 2|B|
2

o 4W(G) > ... > 5°W(G)

e equality is obtained if G is a cvcle.



Introduction Lower bound Upper bound Ratio

Upper bound for W,(G)

Dankelmann, 2009
W(L(G)) < 4 + O(n?)

Mukwembi, 2012

Let G be a connected graph on n vertices. Then

28 4
£n” + O(n").



Upper bound

Upper bound for W,(G)

Dankelmann, 2009
W(L(G)) < 4 + O(n?)

Mukwembi, 2012
Let G be a connected graph on n vertices. Then

4
Gut(G) < %IP + o).

Theorem

Let G be a connected graph on n vertices. Then

4
We(G) < 5—5n5 + O(n*).



Ratio

problem by Dobrynin and Mel'nikov, 2012

Estimate the ratio W(L/(G))/W(G), where L'(G) stands for an
iterated line graph, defined inductively as

,- G ifi=0,
L(G):{ L(L7Y(G)) ifi>o0.



Ratio

problem by Dobrynin and Mel'nikov, 2012

Estimate the ratio W(L/(G))/W(G), where L'(G) stands for an
iterated line graph, defined inductively as

,- G if i =0,
L(G):{ L(L7Y(G)) ifi>o0.

Theorem

Among all connected graphs on n vertices, the fraction We((g)) is

minimum for the star S,, in which case VVVVe(((C;-;)) = 2("n:21).
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